
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2008; 57:1269–1290
Published online 14 April 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1790

Stabilized finite element methods to predict ventilation efficiency
and thermal comfort in buildings

G. Lube1,∗,†, T. Knopp2, G. Rapin1, R. Gritzki3 and M. Rösler 3

1Mathematics Department, Georg-August University Göttingen, D-37083 Göttingen, Germany
2Institute of Aerodynamics and Flow Technology, DLR Göttingen, D-37073 Göttingen, Germany

3Institute of Thermodynamics and Building Energy Systems, TU Dresden, D-01062 Dresden, Germany

SUMMARY

The non-isothermal, incompressible Navier–Stokes equations with Boussinesq approximation are consid-
ered as a model of turbulent indoor air flows. The transient calculation is based on the Reynolds-averaged
Navier–Stokes problem using the k/ε-turbulence model or improved variants such as the v2− f model.
The model is first discretized in time using backward-differencing schemes and then linearized using a
Newton-type method per time step with emphasis on the proper calculation of (non-negative) turbulence
quantities. The resulting auxiliary problems of Oseen type and of advection–diffusion–reaction type are
solved using stabilized finite element method of residual type. Here we summarize some of our recent
analytical results for higher-order methods and shock-capturing techniques. The numerical solution to the
model in boundary layer regions is obtained using either adaptive wall functions if the k-ε model is used
or a hybrid mesh with anisotropic refinement if the v2− f model is applied. Besides the standard flow
quantities, it is possible to calculate quantities such as the age of the air. Such quantities are used to
develop criteria for the evaluation of the efficiency of air exchange in a room. The quality of the numerical
simulations is demonstrated for typical benchmark problems. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Turbulent flows driven or significantly affected by buoyancy occur in a variety of problems
including building ventilation, cooling of electrical equipment, and environmental science. In this
paper, turbulent indoor air flows are modelled by the non-isothermal, incompressible Navier–Stokes
equations with Boussinesq approximation. In practice, such numerical simulations are nowadays
still dominated by turbulence models based on the unsteady Reynolds-averaged Navier–Stokes
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(URANS) equations (e.g. k–ε, k–�, RNG–k–ε, SST, etc.). On the one hand, from an engineering
point of view, such simulations provide sufficiently good results and have been reaching more and
more maturity as a general predictive tool for the design of heating and ventilation systems; but on
the other hand, there exist a couple of theoretical drawbacks and it is well known that for certain
flow situations URANS models give poor predictions. It would be desirable to use approaches
that are closer to the physics of turbulent flows such as large eddy simulation (LES) or variational
multiscale methods. Unfortunately, LES calculations are presently still too expensive even for low-
turbulence flows. Presently, free convection problems can be simulated only for Rayleigh numbers
up to 109 [1]. As indoor air flow simulations typically require long-time integration over several
hours or even days, this cannot be accomplished using the very small time step size required in an
LES. Moreover, there is a growing demand for relatively fast flow solutions, as the flow solver is
used more and more as part of an optimization tool. For these reasons, URANS-based simulations
will still be relevant in the near future.

In this paper, the transient calculation is based on the k–�-turbulence model [2] or on improved
variants of k–�–v2– f type [3–6], see Section 2. Then, in Section 3, the model is first discretized
in time using backward-differencing schemes and then linearized using a Newton-type method
per time step. Here, particular attention has to be paid to the proper calculation of (non-negative)
turbulence quantities, following ideas of [7–9].

The auxiliary problems of Oseen type and of advection–diffusion–reaction type resulting from
the approach in Section 3 are solved using stabilized finite element methods (FEM) of residual type.
A major part of the paper, see Section 4, is devoted to the presentation of our recent results in the
numerical analysis of these methods [10, 11]. These papers address the application of higher-order
methods and of shock-capturing techniques. The numerical solution to the model in boundary
layer regions is obtained using either improved wall functions [12, 13] if the k–ε model is used or
a hybrid mesh with anisotropic refinement if the v2− f model is applied. Our recent paper [14]
on stabilized FEM on such grids provides some analytical background for the latter approach.

In Section 5, we present some applications to indoor air flow simulation based on the research
code ParallelNS in combination with building simulation using TRNSYS [15]. Besides the standard
flow quantities, it is possible to calculate quantities such as the age of the air. Such quantities are
used to develop criteria for the evaluation of the efficiency of air exchange in a room. The quality
of the numerical simulations is demonstrated for typical real-life problems.

This paper is based on a keynote lecture at the 14th International Conference on Finite Elements
in Flow Problems in Santa Fe 2007 (given by the first author). As it represents work in progress,
the applications in Section 5 are based on the k–� model with improved wall functions [12, 13]
whereas the material of Sections 2–4 describes our recent approach based on k–ε–�– f model
with wall layer resolution and higher-order finite elements (FEs).

Notation: For a domain G, the norms of the standard Sobolev spaces Wk,p(G) with k∈N0, p∈
[1,∞] are denoted by ‖·‖Wk,p(G). The L2(G) norm and the L2(G) scalar product are denoted by
‖·‖G and (·, ·)G .

2. MATHEMATICAL MODEL

Let �⊂Rd , d=2,3, be a bounded polyhedral domain. The basic mathematical problem in this
paper is the (non-dimensional) non-isothermal, incompressible Navier–Stokes model. Buoyancy
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forces are taken into account using the Boussinesq approximation. One seeks the velocity field u,
pressure p and temperature � in (0,T )×� as solution to the coupled nonlinear system:

�tu−∇·(2�S(u))+(u·∇)u+∇p=−��g (1)

∇ ·u=0 (2)

�t�−∇·(a∇�)+(u·∇)�=c−1
p q̇V (3)

with the rate of strain tensor S(u)= 1
2 (∇u+∇uT), the isobaric volume expansion coefficient �,

the gravitational acceleration g, the volumetric heat source q̇V and the specific heat capacity cp
at constant pressure [16]. The parameters � and a are the kinematic viscosity and the thermal
diffusivity, respectively. The Prandtl number Pr =�/a is set to be 0.7 for air flow. The Boussinesq
approximation −��g in (1) is applicable if the characteristic temperature difference �� is not too
large. Otherwise, a more sophisticated model has to be used, e.g. a low-speed compressible flow
model, e.g. [17, 18]. Results about existence and uniqueness of solutions to model (1)–(3) can be
found in [19, 20]. Results on FEM for the laminar model are given in [19, 21, 22].

Turbulence may occur for large Rayleigh numbers Ra=�|g|L3��/(�a) with a characteristic
length L , e.g. for natural flow in a closed two-dimensional cavity for Ra�108 . . .109. In this paper,
statistical turbulence models based on the URANS equations will be considered:

�tu−∇·(2�eS(u))+(u·∇)u+∇p=−��g (4)

∇ ·u=0 (5)

�t�−∇·(ae∇�)+(u·∇)�=c−1
p q̇V (6)

where the averaged values of the unknowns are again denoted by u, p and �. An eddy viscosity
assumption for turbulent effects is considered

�e=�+�t , ae=a+ �t
Prt

(7)

with Prt =0.9 for air. For the turbulent viscosity �t , we will use either the standard k–� model
with the turbulent kinetic energy k and the turbulent dissipation rate �, together with wall functions
[7, 9, 13] or, as an improved variant, the k–ε–v2– f model with the additionally modelled wall-
normal velocity fluctuation v2 and the elliptic relaxation f of Durbin and Petterson Reif [4]. More
precisely, we will consider the ‘code-friendly’ �– f version of the k–ε–v2– f model [5, 6], the
so-called k–ε–�– f model with the additional variable �=v2/k with the turbulent viscosities

�t =C�T k�, �k =�+ �t
Prk

, �� =�+ �t
Pr�

(8)

given by

�t k−∇·(�k∇k)+(u·∇)k= Pk+G−ε (9)

�tε−∇·(��∇ε)+(u·∇)�+C�2

T
ε= C�1

T
(Pk+G) (10)

�t�−∇·(�k∇�)+(u·∇)�+ Pk+G

k
�= f + 2�k

k
∇� ·∇k (11)
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and

−L2� f + f = (D1−1)( 23 −�)

T
+ D2(Pk+G)

k
+ 2�

k
∇�·∇k+��� (12)

with the turbulent time scale

T =max

[
min

(
k

ε
; �r

C�
√
6�|S(u)|

)
;6
√

�

�

]
(13)

and the constants as in Table I. The turbulence length scale in (12) is given by

L=CLmax

[
min

(
k3/2

ε
; �r k1/2

C�
√
6�|S(u)|

)
;C	

(
�3

ε

)1/4]
(14)

The production terms in (9)–(12) are defined as

Pk =2�t |S(u)|2, G=−�c0
k

ε

d∑
i, j=1

gi

[
2

3
k
i j −�t

(
�ui
�x j

+ �u j

�xi

)]
��

�x j
(15)

with c0=0.18 and the components of the gravitational vector gi . In the definition of G, the
so-called generalized gradient-diffusion hypothesis is used, see [3].

The boundary �� is split into �−(u), �+(u) and �W =�0(u) depending on sign(n·u) with
the outward pointing unit normal vector n. The k–ε–�– f model is valid down to walls �W of
the domain � (with exception of the ε-equation) and requires a resolution of the boundary layer
region �
 with a layer-adapted grid. Table II contains the boundary conditions where we used the
notation �=2�eS(u)−(p+2/3k)I . �W+
 refers to an artificial boundary with distance 
 to �W .

In Section 5, the standard k–ε model will still be applied. It may be considered as special case
of the k–ε–�– f model by setting �t =C�k2/ε and skipping the equations for � and f . Whereas
results about existence of solutions to the k–ε–�– f model are not available in the literature, some
results about the k–ε approach can be found in [2] and the literature given there.

Table I. Constants of the turbulence model.

C�1 C�2 C� Prk Pr� D1 D2 CL C	 Prt �r

1.4(1+0.05
√
1/�) 1.9 0.22 1.0 1.3 1.4 0.3 0.25 110 0.9 1.0

Table II. Boundary conditions for the k–ε–�– f model.

Inlet �− Wall �0=�W or on �W+
 Outlet �+
u, p u=uin or �·n=�nn u=0 �·n=0
� �=�in �=�W ∇�·n=0
k k= 3

2 (Tu |u|)2 k=0 ∇k ·n=0

ε ε=c3/4� k3/2/L ε= 2�

2
k
 on �W+
 ∇ε ·n=0

� �= 2
3 �=0 ∇� ·n=0

f ∇ f ·n=0 f =0 ∇ f ·n=0
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For the standard k–ε model, an improved wall function method is employed at the Dirichlet
walls [12, 13], where modified boundary conditions are used prescribing the wall-shear stress sw
and the heat flux q̇:

u·n=0, (I−n⊗n)�n=sw (16)

ae∇�·n= q̇c−1
p (17)

Therein, sw and q̇ are obtained from the integration of the one-dimensional boundary layer equations
in the near-wall region where an algebraic turbulence model designed for buoyancy-driven flows
is used.

3. TIME DISCRETIZATION, LINEARIZATION AND DECOUPLING

The highly nonlinear coupled system (4)–(15) as described in the previous section requires a proper
time discretization, linearization and decoupling.

For the time discretization of the non-isothermal Navier–Stokes block (4)–(6), a linearized
backward-differencing scheme BDF(2) is applied with

�t�|t=tm ≈ 3�m−4�m−1+�m−2

2�tm

and �m =�|t=tm . Similar notation is used for the other time derivatives. Setting

Um =2um−1−um−2, Tm =2�m−1−�m−2

the semidiscrete form of the non-isothermal Navier–Stokes block reads

−∇·(2�me S(um))+(Um ·∇)um+ 3um

2�tm
+∇pm =−�Tmg+ 4um−1−um−2

2�tm

∇ ·um =0

−∇·(ame ∇�m)+(Um ·∇)�m+ 3

2�tm
�m = 1

cp
q̇V

m+ 4�m−1−�m−2

2�tm

The analysis of the linearized and nonlinear BDF(2) schemes for the laminar, isothermal Navier–
Stokes model has been considered in [23]. For the nonlinear variant and constant time steps �tm ,
one obtains a rate of 0(�2) for the time-averaged velocity error in l2(H1(�))∩l∞(L2(�)) and of
0(�) for the time-averaged pressure error in l∞(L2(�)/R). For the linearized variant as above,
one eventually obtains an order reduction. The analysis of the BDF(2) scheme with variable time
steps is open so far. In particular, stability problems may occur for increasing time steps.

Next, the turbulence block (9)–(12) of the k–�–�– f model is a strongly coupled, nonlinear
system of advection–diffusion–reaction equations. A major problem is a positivity-preserving
formulation for k,ε,� and f . One possibility is to modify the nonlinear iteration approach by
[7–9] given for the standard k–ε scheme. Consider for simplicity, the k-equation

�t k−∇·(�k∇k)+(u·∇)k+ ε

k
k= Pk +G
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In one step of the linearization loop, the non-negative reaction coefficient �/k, the diffusion coeffi-
cients �k and the right-hand side Pk+G are ‘frozen’. In order to preserve a (continuous) maximum
principle for the linearized problems, one can replace these terms by max(�/k;0), etc. Note that
the maximum principle for the linearized equation will be preserved after semidiscretization with
BDF(2). As the maximum principle does not automatically transfer to the problem after discretiza-
tion in space, another (crosswind type) stabilization will be introduced later on in Section 4.

The linearization cycle within each BDF(2) time step is formally given as follows:

(A) Solve the semidiscretized non-isothermal Navier–Stokes equations using a block Gauss–
Seidel-type method with iterative decoupling of the equations:

• Update the turbulent viscosity �mt and the turbulent thermal diffusivity amt .• Solve the linearized Navier–Stokes problem for um, pm .
• Solve the linearized advection–diffusion–reaction problem for �m .

(B) Solve the semidiscretized equations for the turbulence quantities using a block Gauss–
Seidel-type method with iterative decoupling of the equations:

• Update the non-negative reaction and diffusion coefficients and right-hand sides.
• Solve for km,εm,�m, f

m
(until convergence).

(C) Stopping criterion: Go to (A) if some stopping criteria for um, pm,�m are not yet fulfilled.
Otherwise go to the next time step.

4. RESIDUAL-BASED STABILIZATION OF LINEARIZED SUBPROBLEMS

The iteration scheme (A)–(C) for semidiscretization in time, linearization and decoupling of the
k–ε–�– f model leads to linearized auxiliary problems of

• advection–diffusion–reaction type for � and k,ε,�, f ;
• Oseen type for u, p.

In this section, recent results for a proper stabilized FE discretization of these schemes will be
summarized and discussed. For the efficient solution to the arising algebraic problems, the reader
is referred to the presentation in [24, 25]. In particular, the parallelization via a non-overlapping
domain decomposition together with optimized interface conditions of Robin type between the
subdomains is proposed.

4.1. Linearized advection–diffusion–reaction model on isotropic meshes

Consider first for u∈{�,k,ε,�, f } the linearized advection–diffusion–reaction model

Lu :=−∇ ·(a∇u)+(b·∇)u+cu= f in �, u=0 on �� (18)

with coefficients a,c∈L∞(�), b∈(H1(�))d ∩(L∞(�))d and source term f ∈L2(�). Note that
the application of turbulence models in Sections 2 and 3 requires a variable diffusion coefficient a.
The boundary condition is prescribed only for ease of presentation. Moreover, assume

a(x)�a0>0, (∇ ·b)(x)=0, c(x)�0 a.e. in �
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The coefficient c is normally given as the sum of a reaction term c̃ and an inverse time step 1/�t .
The basic variational formulation of (18) reads

Find u∈V :=H1
0 (�) s.t. A(u,v)= l(v) ∀v∈V (19)

with

A(u,v) :=(a∇u,∇v)�+(b·∇u+cu,v)� (20)

l(v) :=( f,v)� (21)

Let Th be an admissible triangulation of the polyhedral domain � consisting of shape-regular
(isotropic) elements. Vh :={v∈H1

0 (�)∩C(�̄)|v|T ∈ Pr (T )∀T ∈Th} is a conforming FE subspace.
We apply a modified streamline-upwind/Petrov–Galerkin (SUPG) scheme

Find u∈Vh : Arbs(u,v)= L rbs(v) ∀v∈Vh (22)

with

Arbs(u,v) :=(a∇u,∇v)�+(b·∇u+cu,v)�+ ∑
T∈Th


T (L̂u,b·∇v)T (23)

L rbs(v) :=( f,v)�+ ∑
T∈Th


T ( f,b·∇v)T (24)

In order to treat the variable diffusion coefficient a, the modified elliptic operator

L̂u|T :=−∇·�T (a∇u)+(b·∇)u+cu (25)

together with the L2-orthogonal projection �T : [L2(T )]d →[Pr (T )]d is introduced.
The analysis of this SUPG-FEM is performed with respect to the following triple norm

‖|v‖| :=
( ∑
T∈Th

(‖√a∇v‖2
(L2(T ))d

+‖√cv‖2L2(T )
+
T ‖b·∇v‖2L2(T )

)

)1/2

Theorem 1 (Lube and Rapin [11])
Let the set {
T } of SUPG parameters be chosen as


T ∼min

{
hT

r‖b‖(L∞(T ))d
; 1

‖c‖L∞(T )

; h2T
r4‖a‖L∞(T )

}
(26)

Then the discrete problem (22) admits a unique solution uh ∈Vh and the a priori error estimate:

‖|u−uh‖|2�C
∑

T∈Th

h2(l−1)
T

r2(k−1)
Mopt

T ‖u‖2Hk(T )
, l=min(r+1,k) (27)

with

Mopt
T :=‖a‖L∞(T )

(
1+PeT +�T +min

(‖a‖L∞(T )

infT a
Pe2T ;r2

)
+

‖a‖2
Wk−1,∞(T )

‖a‖2L∞(T )

)
(28)
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and

PeT := hT ‖b‖(L∞(T ))d

r‖a‖L∞(T )

, �T := ‖c‖L∞(T )h2T
r2‖a‖L∞(T )

(29)

The proof is based on the stability estimate Arbs(v,v)� 1
2‖|v‖|2 for all v∈Vh and a modified

Galerkin orthogonality condition stemming from the modification (25). The a priori estimate (27)–
(29) reflects the influence of the polynomial degree r and of the variable viscosity coefficient a.
The latter fact is essential for the RANS-based turbulence model.

For a two-dimensional advection–diffusion–reaction problem with an a-independent smooth
solution, Figure 1 shows the remarkable effect of an increasing polynomial degree for fixed mesh
sizes h. The result is valid for vanishing and large reaction terms, which may correspond to an
infinite or small time step �t .

Besides the a priori error estimate in Theorem 1, a posteriori estimates can be applied to scheme
(22) with the goal of adaptive spatial mesh refinement, see, e.g. [26].

It is well known that the SUPG solution may suffer from spurious local oscillations in shear
layers. This is, in particular, very dangerous for the solutions to advection–diffusion–reaction
problems for the turbulence quantities as they have to be non-negative. As a remedy, the following
class of crosswind-stabilized (cs) variants of the SUPG scheme are considered as

Find uh ∈Vh : Arbs(uh,v)+ ∑
T∈Th

(�csT (uh)Dcs∇uh,∇v)T = L rbs(v) ∀v∈Vh (30)

with

Dcs :=
⎧⎨
⎩ I − b⊗b

|b|2 , b �=0

0, b=0
, �csT (w) := lcsT (w)

‖L̂w− f ‖L2(T )

|w|H1(T )+T︸ ︷︷ ︸
=:R∗

T (w)

(31)

and a very small term T >0.
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Figure 1. Convergence w.r.t. the polynomial order p in the triple norm ‖|u−uh‖| for fixed (isotropic)
mesh width h for a=10−6,c=0 (left) and a=10−6,c=103 (right).

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1269–1290
DOI: 10.1002/fld



STABILIZED FEM FOR PREDICTION OF VENTILATION EFFICIENCY 1277

Theorem 2 (Lube and Rapin [11])
Choose 
T as in (26). Let the restriction 0�lcsT (w)��
T R∗

T (w) for all w∈Vh with appropriate
�>0 on the limiter function be valid. Moreover, let the solution to (18) be smooth such that (∇·
(a∇u))|T ∈L2(T ) and u∈Hk(T ), k>d/2 for all T ∈Th . Then the solution uh to the crosswind-
stabilized SUPG scheme (30)–(31) admits the error estimate

‖|u−uh‖|2+ ∑
T∈Th

‖(�csT (uh)D
cd
cs )

1/2∇(u−uh)‖2(L2(T ))d
�C

∑
T∈Th

h2(l−1)
T

r2(k−1)
Mopt

T ‖u‖2Hk(T )
(32)

The estimate (32) provides additional control of the crosswind-stabilization term without
degrading the right-hand side of estimate (27)–(29) for the basic SUPG scheme (22)–(25). The
result gives only an upper bound of the limiter function lcsT (·); hence, other analytical tools are
necessary for its design. In particular, the discontinuity-capturing/crosswind-dissipation (DC/CD)
scheme [7] with the limiter function

lcdT (w)= ldc/cdT (w) := 1

2
hT max

{
0,�− 2‖a‖L∞(T )

hT R∗
T (w)

}
, T =0 (33)

can be used within the framework of crosswind-stabilized SUPG schemes for appropriate values
of �. Consider a problem with an interior layer skew to the mesh in �=(0,1)2 with the solution
u(x)=1/2(1− tanh((2x1−x2−1/4)/

√
5a) and data a=10−6,b(x)=1/

√
5(1,2)T ,c=0, f = Lu.

In Figure 2, the SUPG-FEM without and with the DC/CD scheme [7] using the choice (33)
are compared. Note that the crosswind stabilization preserves the steep gradient of the SUPG
scheme. Again, a remarkable improvement is observed for increasing polynomial degree and fixed
(isotropic) mesh size h.

A serious problem appears in the treatment of the corresponding nonlinear algebraic problems
if the stationary case is considered. A convenient approach is a semi-implicit treatment of the
nonlinearity within linearization loop (A)–(C).

Figure 2. SUPG-FEM without/with DC/CD for h= 1
64 ,r ∈{1,4}, �=0.7,=10−4.
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4.2. Linearized incompressible problems of Oseen type on isotropic meshes

Consider now a linearized incompressible problem of Oseen type

−∇·(2�S(u))+(b·∇)u+cu+∇p= f in � (34)

∇·u=0 in � (35)

u=0 on �� (36)

with

�(x)��0>0, (∇·b)(x)=0,
1

�t
∼c=const.�0 a.e. in �

Again, no-slip conditions (36) are prescribed for ease of presentation. Using the spaces W :=
V×Q :=(H1

0 (�))d ×L2
0(�), the variational formulation of problem (34)–(36) reads

find U ={u, p}∈W s.t. A(b;U,V )=L(V ) ∀V ={v,q}∈W (37)

with

A(b;U,V ) :=(2�S(u),∇v)�+((b·∇)u+cu,v)�−(p,∇ ·v)�+(q,∇·u)� (38)

L(V ) :=(f,v)� (39)

We consider an admissible and shape-regular (isotropic) triangulation Th of the polyhedral
domain � and the FE subspaces

Xr
h :={v∈C(�̄) |v|T ∈ Pr (T )∀T ∈Th}, r ∈N

It is well known that equal-order FE spaces for velocity/pressure

Wr,r
h :=Vr

h×Qr
h :=[Xr

h∩H1
0 (�)]d ×(Xr

h∩L2
0(�))

violate the discrete inf–sup (or Babuska–Brezzi) stability condition. As a consequence, the basic
Galerkin FEM

find U ={u, p}∈Wr,r
h s.t. A(b;U,V )=L(V ) ∀V ={v,q}∈Wr,r

h

may suffer from spurious pressure oscillations. Another source of instabilities may occur if the
advection term dominates the diffusion terms. As a remedy, the following ‘classical’ residual-based
scheme is considered:

find U ={u, p}∈Wr,r
h :Arbs(b;U,V )=Lrbs(V ) ∀V ={v,q}∈Wr,r

h (40)

with

Arbs(b;U,V )=A(b;U,V )+∑
T


T (L̂ Os(b;u, p), (b·∇)v+∇q)T︸ ︷︷ ︸
SUPG- and PSPG-stabilization

+ �T (∇·u,∇ ·v)T︸ ︷︷ ︸
div-stabilization

(41)

Lrbs(V )=L(V )+∑
T

︷ ︸︸ ︷

T (f, (b·∇)v+∇q)T (42)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1269–1290
DOI: 10.1002/fld



STABILIZED FEM FOR PREDICTION OF VENTILATION EFFICIENCY 1279

PSPG stabilization stands for pressure stabilization/Petrov–Galerkin stabilization. The case of
variable viscosity � appearing in the turbulent case is treated by

L̂ Os(b;u, p) :=−∇ ·�T (2�S(u))+∇p+(b·∇)u+cu (43)

with the orthogonal L2-projection �T : [L2(T )]d×d →[Pr (T )]d×d .
The analysis of scheme (40)–(43) on isotropic meshes is performed with respect to the following

triple norm |[·]|rbs according to

|[V ]|rbs2 :=‖√2�S(v)‖2L2(�)
+‖√cv‖2L2(�)

+∑
T

(
T ‖(b·∇)v+∇q‖2L2(T )
+�T ‖∇·v‖2L2(T )

)

and leads to the following result.

Theorem 3 (Lube and Rapin [10])
Let the SUPG/PSPG parameters {
T } and parameters {�T } be chosen as


T ∼min

{
h2T

r2‖�‖L∞(T )

; 1

‖c‖L∞(T )

; hT
r‖b‖(L∞(T ))d

}
, �T ∼ h2T

r2
T
(44)

Then the discrete problem (40)–(43) admits a unique solution Uh ={uh, ph}∈Wr,r
h and the a priori

error estimate

|[U−Uh]|2rbs �C
∑

T∈Th

h2(l−1)
T

r2(k−1)
(‖u‖2Hk(T )

+‖p‖2Hk(T )
)

×
(

‖�‖L∞(T )+
‖�‖2

Wk−1,∞(T )

‖�‖L∞(T )

+ ‖b‖(L∞(T ))d hT
r

+ ‖c‖L∞(T )h2T
r2

)
(45)

The proof basically relies on the stability condition Arbs(b;V,V )� 1
2 |[V ]|2rbs,∀V ={v,q}∈

Vr
h×Qr

h . The result is a proper extension of Theorem 1. Note that additionally a weighted L2-error
estimate for the pressure can be given, see [10].

In Figure 3 we present the r -convergence of the equal-order scheme (40)–(43) for a smooth and
�-independent solution for �=10−6,c=0 for some fixed isotropic mesh sizes h.

Note that the application of a posteriori techniques can be used for a proper adaptive refinement
of the spatial mesh, see, e.g. [27].

4.3. Residual-based stabilization on hybrid meshes

The efficient resolution of boundary layers at a wall �W can be accomplished using an anisotropic
refinement of the layer region. Consider the special situation of a shear layer being located at a
wall (here at xd =0). A boundary-fitted hybrid mesh Th =T

g
h∪Tbl

h consists of an (unstructured)
isotropic mesh T

g
h away from wall layers and a structured anisotropic mesh Tbl

h of the so-called
tensor product type [28], see Figure 4.

The analysis of the residual-based stabilized scheme of Section 4.2 on shape-regular (isotropic)
meshes has been extended in [14] to this idealized situation. Assume that the tensor-product-type
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Figure 3. Convergence w.r.t. the polynomial order for smooth solution with
�=10−6,c=0 and fixed h: ‖∇(u−uh)‖0 (left), ‖p− ph‖0 (right).

Figure 4. Examples of hybrid meshes for d=2 and 3.

mesh in the layer zone is refined in the xd -direction towards the wall such that the aspect ratio of
the elements nearest to the wall at xd =0 behaves like

hmax,T

hmin,T
∼ 1

characteristic length scale
(46)

For a laminar channel flow, the ‘characteristic length scale’ is of order
√

� for unit channel
height. For turbulent channel flow, it typically corresponds to �/u� with friction velocity u� =(
��u1/�x2|�W

)1/2.
Basic ingredients of the analysis in [14] are local (anisotropic) interpolation estimates and a

modified design of the stabilization parameters. Suppose for each element T that


T ∼min

(
h2min,T

�
; 1

‖c‖L∞(T )

; h̃T
‖b‖(L∞(T ))d

)
, �T ∼ h2max,T


T
(47)

with a characteristic length h̃T ∈[hmin,T ,hmax,T ]. In the isotropic region T
g
h , one obtains the

standard parameter design (44) setting h̃T ∼hmax,T . Numerical experience shows that the influence
of the length scale h̃T is not very critical in the anisotropic region Tbl

h . The choice h̃T =vol(T )1/d

provides a reasonable compromise between accuracy and computational costs. For an application
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of the approach to the isotropic turbulent channel flow at Re� =395 based on the k–ε–�– f model,
we refer to [14]. A very good agreement of the main flow profile and of turbulence quantities to
the DNS data of [29] and to numerical results in [5] is obtained.

Note that a similar approach and analysis can be extended to advection–diffusion–reaction
problems (18).

4.4. Application to a non-isothermal benchmark problem

The approach presented in Sections 3 and 4 is applied to the non-isothermal turbulent flow in a
closed cavity at Ra=1.58×109 using the k–ε–�– f model. The cavity has dimension (0, L)2×
(0,b) with L=0.75m, b=0.04m and is filled with air, i.e. �=1.53×10−5m2 s−1, a=2.186×
10−5m2 s−1 and �=3.192×10−3K−1. The initial conditions are u|t=0=0, �|t=0=303.15K. The
sidewalls are held at different temperatures �w =323.15K for the left hot sidewall and �w =
283.15K for the right cold sidewall. On top and bottom walls �w is prescribed using the experi-
mental data of [30]. The boundary conditions in the spanwise direction are designed to simulate
symmetry faces. Figure 5 (left) gives some illustration.

The results are simulated on a simplicial mesh with 69×69×5 nodes in the x1-, x2- and x3-
directions. An anisotropic mesh refinement starting with the first grid line at a wall distance of
0.001m is used for the x1- and x2-directions to resolve the boundary layers, see Figure 5 (right).
Piecewise linear elements (r =1) for all unknowns together with all stabilization techniques (as
described in this section) are used. The results are compared with experimental data in [30] and
with numerical results using the k–ε model with wall functions, see [13].

Figure 6 shows the boundary layer profiles for the vertical velocity component u2/u0 (with
reference velocity u0=0.9692ms−1) near the hot left wall at y/L=0.2 and 0.5 for the k–ε–�– f
model, which are in reasonable agreement with the experimental data. Regarding the velocity
profile at y/L=0.2, it has to be mentioned that the experiment shows the existence of small
recirculation regions of low fluid velocity (cf. Figure 9 in [30]), which are difficult to capture
in the simulations due to the modelling assumptions of the turbulence models. At y/L=0.8, the
deviation of the predicted velocity profile from the experimental data is more pronounced (not
shown here), as the growth of the boundary layer thickness along the hot wall in the streamwise
direction is underpredicted by the k–ε–�– f model. This will be subject to future research. Figure 7

bottom
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Γ
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Zoom: 3:1

Figure 5. Sketch of cavity and streamlines (left) and of the mesh (right) for closed cavity flow [30].
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Figure 6. Boundary layer profiles for vertical velocity component u2/u0 near hot left wall at y/L=0.2
(left) and y/L=0.5 (right) and experimental data of [30].
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Figure 7. Horizontal temperature profile (T −Tc)/(Th−Tc) near hot left wall at y/L=0.5 (left) and
vertical temperature profile (T −Tc)/(Th−Tc) at x/L=0.5.

(left) shows the horizontal temperature profile near the hot wall at y/L=0.5 that demonstrates
the proper resolution of the temperature boundary layer. For the cold wall, agreement with the
experimental data is similar to the corresponding positions at the hot wall. Figure 7 (right) shows the
prediction of the vertical gradient of the temperature profile. Near the top wall, the agreement with
the experimental data is very good, but in the lower half of the cavity, temperature is predicted too
low by the k–ε–�– f model. Such a behaviour was also observed even for a fully resolved LES by
[31], who report that the flow in the midsection x3=b/2 exhibits to some extent three-dimensional
features if the end walls in the x3-direction are taken into account.

5. APPLICATION TO INDOOR AIR-FLOW SIMULATION

In this section, recent results for the k–� URANS model together with modified wall functions
are reported. Note that a full resolution of the boundary layers (as for the previous example) is
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currently not feasible for routine indoor air-flow simulations. Within the modified wall treatment,
a one-dimensional boundary layer computation on an embedded subgrid between the wall and the
first off-wall node is used, see, e.g. [13] for more details and for a validation of the method, which
has been demonstrated to be very beneficial for heat transfer calculations. In that way the wall
distance of the first subgrid point is lower than 0.003m, whereas it is 0.05m for the first grid point
of the tetrahedral mesh.

The simulations have been performed on simplicial meshes with piecewise linear elements for
all unknowns. The FE meshes contain approximately 200 000–600 000 elements. All stabilization
techniques (as described in Section 4) are applied. In particular, the DC/CD scheme is important
to avoid non-physical oscillations in the energy equation. The non-linearity of this scheme can
be efficiently treated together with the non-linearities of the turbulence model using the described
iterative solution scheme.

For many practical simulations, a better resolution of the flow is mandatory. This is in particular
true for flows with unsteady separation, which will become more and more important for future
applications. The results in Section 4 show that it is much more efficient with respect to the
number of unknowns to increase the polynomial order than to refine the mesh. Moreover, using
higher-order elements yields much sharper layers and the oscillations in the crosswind direction
are considerably smaller, cf. Figure 2.

The implementation of the full k–�–�– f URANS model with higher-order schemes according
to the presentation in Sections 3 and 4 is still work in progress. Corresponding results will be
reported elsewhere.

5.1. Efficiency of ventilation processes

An important criterion for the evaluation of the indoor air climate is the air-exchange efficiency. It
is defined as the ratio �a of the minimal residence time �n to the doubled averaged residence time
〈�〉, see [32]. By the use of tracer gas techniques, the air-exchange efficiency can be measured in
experiments. For computations it is helpful to apply the concept of the age of the air, see also [32].
However, the traditional theory is mainly restricted to stationary situations. Alternatively, one can
compute the age of the air �p by the transient advection–diffusion problem

��p
�t

+(u·∇)�p−∇·(a�,e∇�p)=1 in �

�p =�p,in on �−(u), a�,e∇�p ·n=0 on �+(u)∪�W

This problem can be treated using the approach proposed in Section 4. Afterwards the local data
of the age of the air are available for the evaluation of the ventilation process. In order to assess
different situations, it is common to work with a local air-exchange index

�ap,t =
�outp,ref

�p
with �outp,ref=

1∫
�+ do

∫
�+

�refp do

via comparison with the idealized displacement flow (piston flow) with the same flow rate V̇ =∫
�− u·ndo. Herein �outp,ref represents the age of the air at the outlet of the reference flow. (Note that
the local air-exchange index �ap,t is not defined in the inlet opening.)

In addition to the air-exchange index, it is possible to calculate the air-exchange efficiency for
transient situations by generating an idealized reference flow (piston flow) with the same mean
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age of the air. Details are given in [33]. In particular, the stationary criterion given above appears
as a special case.

As a first application, Figure 8 (right) presents the isosurfaces of the air-exchange index of an
office room during natural ventilation via an opened window (see Figure 8, left). The efficient
refreshment of the air in the working area of the office is obvious. For calculating the conditions for
the flow through the opening, the above-mentioned domain decomposition method can be applied,
see [13].

The next application is a displacement ventilation in a conference room with ‘people’ around a
conference table, see Figure 9. Boundary conditions for the temperature are computed by coupling
the CFD code with a thermal building simulation program using PVM [34]. Very reasonable
temperatures in the working area of the conference room together with low flow velocities can
be obtained from Figure 9. The efficiency of the ventilation according to the working principle
of a displacement ventilation system is documented in Figure 9 (right) for a cross section of the
conference room.

We refer to careful studies at the Technical University Dresden on calculations, evaluations and
optimizations of ventilation for various variants of natural ventilation in offices [35].

5.2. Thermal comfort in office buildings

Consider the simulation of thermal comfort in office buildings under summer conditions. Energy
efficient cooling of rooms and buildings becomes more and more important. Therefore, a close look
to the principles of cooling methods seems to be necessary. The above-mentioned coupled simu-
lation between the discussed CFD model and thermal building simulation delivers all information
for a detailed evaluation of the thermal comfort. Different cooling methods will be discussed. The
set-up in a low-energy building with identical office (or residential) rooms is shown in Figure 10.
Internal loads of 540W stem from two ‘persons’ and technical equipment. A part of the inner loads
is modelled as local convective sources in cylindrical areas at the working places of the persons
marked in the figure. The simulation is performed under moderate summer conditions followed
by a period of increasing outdoor temperatures, see Figure 10 (right). Boundary conditions for
the temperature again are obtained using coupling of the CFD code ParallelNS with the building
simulation program TRNSYS [15]. In order to evaluate the thermal comfort, snapshots from the
transient simulation with transient boundary conditions are taken on the last day of the simulation
period at the time of highest thermal loads.

Figure 8. Natural ventilation of an office room (left) and isosurfaces of the air-exchange index (right).
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Figure 9. Displacement ventilation in a conference room with ‘persons’ (left)
and efficiency of the ventilation (right).

Figure 10. Low-energy building with identical offices (upper left and upper
right) and outdoor temperature (bottom).

The computational domains of the investigated cases were meshed with around 300 000 tetrahe-
dral elements. In order to verify the mesh independence, some calculations were repeated on grids
with between 600 000 and 100 000 elements. The results of the mesh independence check showed
in all cases, even with relatively coarse meshes, a good agreement. This is mainly due to the special
wall treatment using a subgrid from the wall up to the first grid point of the tetrahedral mesh that
is used in all cases. For a calculation of 1 h real time on a grid of approximately 300 000 elements,
a modern personal computer needs approximately 20 h CPU time. However, this is valid only for
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the fully coupled phase, where thermal building simulation and CFD are running together. During
the preparation phase, thermal building simulation is separately running, but consuming only some
minutes of CPU time for several days of real time. That means for calculation of a period of 18
days (432 h, see Figure 10), consisting of 430 h preparation phase and 2 h fully coupled phase,
two complete days of CPU time are necessary. As mentioned above, at the time of the highest
thermal loads (this is normally in the afternoon of the last day of the simulation period), during
the fully coupled phase, snapshots from the URANS simulation are taken for evaluation. In order
to detect problems of thermal comfort, an additional averaging is not helpful. Snapshots from
different situations at the same time and under the same conditions can be applied for comparison.
The Rayleigh number for a typical calculation varies between 1.0×1010�Ra�5.0×1.0×1010.

At first, cooling by air with ceiling diffusors is considered. Figure 11 shows the operative
temperature in the midplane and selected vertical profiles of the air temperature. The operative
temperature ϑop=�ϑL+(1−�)ϑR is defined as a weighted mean average of local air temperature
ϑL and local radiant temperature ϑR. The radiant temperature results from radiation conditions
of point to surface calculations; the weighting factor � is 0.5 for velocities below 0.2ms−1 and
increases up to 0.7 for velocities higher than 0.6ms−1, see [36, 37]. Note that the so-called occupied
zone, where thermal comfort should be guaranteed, is marked with a white line in the left figure.

In Figure 12 the same situation is shown for cooling by displacement ventilation. Both situations
can be compared because of the same air-exchange rate of 6/h and the same demand of the

Figure 11. Ceiling diffusor: operative temperature in the midplane (left) and
air temperature profiles (right).

Figure 12. Displacement ventilation: operative temperature in the midplane (left)
and air temperature profiles (right).
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controlling system. The operative temperature at the sensor point located in the middle of the room
in a height of 0.6m has to be 24.5◦C in all cases. As mentioned above, the operative temperature
comprises the effects of radiation and convection and is therefore a good measure for the thermal
comfort [38]. The figures and diagrams clearly show the working principle of the cooling method.
Ceiling diffusers are typical inlet devices for mixing ventilation. Therefore, almost no stratification
can be recognized in the temperature profiles in Figure 11. However, in displacement ventilation
a stratification is intended, as can be clearly seen from Figure 12.

Another very attractive possibility for cooling is to combine displacement ventilation with ceiling
cooling. Figure 13 presents the operative temperature and air temperature profiles for that cooling
method. The radiation effect of ceiling cooling permits to use higher air temperatures.

In all of the above discussed situations, only diffuse solar radiation, but not direct solar radiation,
is considered. It can be constructively arranged by an overhang that prevents against direct solar
radiation. However, the developed simulation program also permits to evaluate the effect of solar
gains in detail. Figure 14 shows combined cooling in the case of a sun blind that reduces the direct
solar radiation by 75% and diffuse solar radiation by 25%.

The operative temperature as well as the air temperature profile is influenced by the solar gains.
However, the system is able to provide high thermal comfort under these conditions. The region
where direct solar radiation meets the floor is marked in Figure 14.

Figure 13. Combined cooling: operative temperature in the midplane (left) and
air temperature profiles (right).

Figure 14. Combined cooling with sun blind: operative temperature in the midplane
(left) and air temperature profiles (right).
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Finally, Figure 15 shows the same situation for a room with combined cooling but no solar
protection. It is obvious that the compensation of high solar gains is a challenge for a cooling
system. The influence on the operative temperature can be clearly seen. The corresponding inner
surface temperatures are shown in Figure 16. In addition, the draught rating (DR) is calculated
for a vertical plane in 0.1m height according to ISO 7730 [36]. Draught is an unwanted local
cooling of the body by air movement. It can be calculated by an empirical formula including local
air temperature, local air velocity and turbulence intensity and results in a percentage of people
who may be bothered by draught. For further details see [36]. It can be seen from the figures that
missing solar protection in the summer (cooling) season is not only a waste of energy, it may also
create problems concerning thermal comfort. The combined system is a very advanced one, pure
air cooling or ceiling cooling alone will show more losses in thermal comfort and is not discussed
here.

Finally, it can be seen that the developed method of stabilized FEs combined with thermal
building simulation is a powerful tool for analyzing indoor air flows, especially concerning the
thermal comfort. Although it is impossible to calculate every detail of the turbulent flow by the
presented method and the selected turbulence model it is very helpful in engineering practice.
A comprehensive investigation of thermal comfort under summer conditions from an engineering
point of view can be found in [37].

Figure 15. Combined cooling without sun blind: operative temperature in the midplane
(left) and air temperature profiles (right).

Figure 16. Combined cooling without sun blind: inner surface temperatures (left) draught rating (right).
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6. SUMMARY AND OUTLOOK

In this paper, an improved URANS turbulence model (k–�–�– f ) for turbulent indoor air flows
is considered. Emphasis is put on a careful treatment of linearization regarding non-negativity of
relevant quantities. We present our recent analytical results for higher-order stabilized FE methods
with equal-order interpolation of velocity and pressure. In particular, we address the efficient
resolution of boundary layers with anisotropic mesh refinement. Finally the approach is applied
to the numerical simulation of buoyancy-driven flows. In particular, the application of criteria for
the evaluation of the indoor air climate and simulation studies of thermal comfort in offices is
considered.

Further research will focus on the development of efficient computational optimization tools
(e.g. via domain decomposition) and on the application of LES and detached-eddy simulation for
thermally driven flows.
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